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Abstract. Predictions are made for single spin azimuthal asymmetries due to the Collins effect in pion
production from semi-inclusive deeply inelastic scattering off transversely and longitudinally polarized
targets for the HERMES and COMPASS experiments. The x-dependence of the asymmetries is evaluated
using the parton distribution functions from the chiral quark–soliton model. The overall normalization
of the predicted asymmetries is determined by the information on the Collins fragmentation function
extracted from previous HERMES data on azimuthal asymmetries Asin φ

UL from a longitudinally polarized
target. The single spin asymmetries AUT from the transversely polarized proton target are found to be
about 20% for positive and neutral pions both at HERMES and COMPASS. For a longitudinally polarized
target we obtain for COMPASS Asin φ

UL ∼ 1% and Asin 2φ
UL ∼ 3%.

1 Introduction

Noticeable single spin azimuthal asymmetries1 Asin φ
UL have

been observed by the HERMES collaboration in pion and
kaon electro-production in semi-inclusive deep-inelastic
scattering (SIDIS) of an unpolarized lepton beam off a
longitudinally polarized proton or deuteron target [1–4].
Recently the CLAS collaboration reported the measure-
ment of the azimuthal asymmetry Asin φ

LU from SIDIS of a
polarized beam off an unpolarized target [5]. Previously
indications for the azimuthal asymmetry AUT from SIDIS
of an unpolarized beam off a transversely polarized target
were reported by the SMC collaboration [6].

Assuming factorization these single spin asymmetries
can be explained by the Collins [7] and Sivers effect [8]
in terms of so far unexplored distribution and fragmen-
tation functions, namely the nucleon chirally odd twist-2
transversity distribution ha

1 and twist-3 distribution func-
tions ha

L and ea [9], the Collins fragmentation function
H⊥a

1 [7, 10], the chirally even Sivers distribution function
f⊥a
1T [8,11–14] (and/or transverse momentum weighted mo-

ments thereof [15, 16]). The H⊥a
1 and f⊥a

1T quantify the
Collins and Sivers effect. The former describes the left–
right asymmetry in the fragmentation of a transversely

1 U denotes the unpolarized beam. L (below also T) de-
notes the longitudinal (and transverse) target polarization with
respect to the beam. The superscript sin φ characterizes the
azimuthal distribution of the produced hadrons with respect
to the direction of the exchanged virtual photon. The precise
definitions are given in the appendix

polarized quark into an unpolarized hadron; the latter de-
scribes the distribution of unpolarized quarks in a trans-
versely polarized nucleon. Both are referred to as T -odd
since, if there were no interactions, these functions would
be forbidden by time reversal.

The HERMES data on single spin azimuthal asymme-
tries from SIDIS off a longitudinally polarized target [1–4]
provide important indications that the mechanisms sug-
gested by Collins and Sivers [7,8] work, which makes them
most exciting but also difficult to interpret. It is not clear
which portion of the observed effect should be assigned
to the Collins, and which to the Sivers mechanism. More-
over, numerous novel distribution and fragmentation func-
tions complicate the analysis. Reasonable descriptions of
the HERMES data [1–4] using different assumptions and
models were given in [17–23] in terms of the Collins ef-
fect only. Noteworthy is that information on the Sivers
function gained from a phenomenological description of
single spin asymmetries in pp↑ → πX [14] indicates that
neglecting the Sivers effect in the analysis of the HERMES
experiment could be justified [24].

The understanding of the underlying phenomena is dif-
ficult also because so far there is only one clear observable
for target single spin asymmetries in SIDIS with polarized
targets, the Asin φ

UL asymmetry measured by HERMES [1–4].
Although at HERMES Asin φ

UL was measured in electro-
production of different hadrons from different targets –
providing valuable insights into the flavor dependence of
the process – the observation of other independent observ-
ables which allow one to distinguish the Collins and Sivers
effect is needed to clarify the situation.
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The azimuthal asymmetry Asin 2φ
UL is such an observ-

able, for it is generated by the Collins effect only [15, 16].
Unfortunately, in the kinematics of the HERMES experi-
ment Asin 2φ

UL was found to be rather small and consistent
with zero within (relatively large) error bars [1–4]. This
asymmetry could be accessed in the CLAS experiment,
which operates at somehow lower energies and higher lu-
minosity than HERMES. In the different kinematics of the
CLAS experiment Asin 2φ

UL is expected to be larger than at
HERMES and measurable [25],2 and, indeed, encourag-
ing preliminary results have already been reported in [26].
Also in the COMPASS experiment Asin 2φ

UL will probably
be observable – as we will estimate below.

More conclusive insights, however, are expected from
SIDIS experiments with transversely polarized targets3,
where the Collins and Sivers effects [7, 8], can cleanly
be distinguished [16]. Those experiments are presently in
progress at HERMES [27] and COMPASS [28]. Estimates
of these asymmetries for HERMES were presented
in [21,29].

In this paper we will predict the azimuthal single spin
asymmetry due to the Collins effect from a transversely
polarized target for the kinematics of the HERMES and
COMPASS experiments. For that we shall use predic-
tions for the transversity distribution function ha

1(x) from
the chiral quark–soliton model [30] and information on
the analyzing power 〈H⊥

1 〉/〈D1〉 from a previous analy-
sis [22] of the HERMES data.4 Indeed, the present ap-
proach, based on the chiral quark–soliton model and the
instanton vacuum picture, describes in a theoretically con-
sistent and phenomenologically satisfying way [22,23] the
x-dependence of the HERMES data [1–4]. In a certain sense
the analyzing power 〈H⊥

1 〉/〈D1〉 from [22] quantifies the
amount of Collins effect needed to understand the HER-
MES data [1–4] within this approach. Therefore the com-
parison of our prediction to the outcome of the HERMES
and COMPASS transverse target polarization experiments
will yield more than an important test of the approach and
its consistency. An agreement would support also the con-
clusion of [24] that the Sivers effect can be neglected in
the Asin φ

UL asymmetries and it would justify, a posteriori,
the attempts [17–23] to understand the HERMES data on
AUL in terms of the Collins effect only.

This paper is organized as follows. In Sect. 2 the SIDIS
process and its description is discussed under the assump-

2 The different kinematics and high luminosity at CLAS have
already been explored to measure another azimuthal asymme-
try previously found consistent with zero at HERMES, namely
the azimuthal asymmetry in SIDIS of a polarized beam off an
unpolarized target, Asin φ

LU . This asymmetry could be due to
the Collins effect [15, 16] and provide first indications to the
twist-3 distribution function ea(x) [25]

3 A first observation of single spin azimuthal asymmetries in
SIDIS from a transversely polarized target – which unfortu-
nately retained its preliminary status – was reported from the
SMC experiment [6]

4 Actually, in that analysis [22] the Sivers function was
neglected, which has later been shown to be theoretically con-
sistent and phenomenologically justified [24]

tion of factorization. In Sect. 3 our assumptions on the
novel distribution and fragmentation functions are
described. In Sects. 4 and 5 the predictions are presented
for the HERMES and COMPASS transverse target polar-
ization experiments, as well as for the longitudinal tar-
get polarization experiment at COMPASS. In Sect. 6 we
present general comments on the Sivers effect in SIDIS
asymmetries. Section 7 contains the summary and conclu-
sions.

2 The contribution of the Collins effect
to the azimuthal asymmetry
from a transversely polarized target

In the HERMES and COMPASS experiments the cross
sections σ↑↓

N for the process lN↑↓ → l′hX will be measured,
where N↑↓ means: transversely with respect to the beam
polarized target; see Fig. 1.

With P , l and l′ denoting the momenta of the target
and of the incoming and outgoing lepton the kinematic
variables are defined as s := (P + l)2, q := l − l′ with
Q2 := −q2, and W 2 := (P + q)2, and

x :=
Q2

2Pq
, y :=

Pq

P l
, z :=

PPh

Pq
. (1)

Let S↑↓ denote the modulus of the polarization vector.
The component of the target polarization vector which is
transverse with respect to the hard photon is characterized
by the angle ΘS , see Fig. 1, given by

sin ΘS =
S↑↓

T

S↑↓ = cos θγ

√
1 + tan2θγ sin2 φS′ ≈ cos θγ ,

(2)
where φ′

S is the azimuthal angle of the target spin direc-
tion around the lepton beam direction counted from the
scattering plane, and cos θγ is given by

cos θγ =

√
1 − (4MN

2x2)(1 − y − MN
2x2y2/Q2)

(Q2 + 4MN
2x2)

. (3)

Since tan2θγ = O(M2/Q2) the approximation in the last
step of (3) works well.
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Fig. 1. Kinematics of the process lN↑ → l′hX in the lab frame
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With φ (φS) denoting the azimuthal angles between the
hadron production plane (the nucleon spin) and the lepton
scattering plane, see Fig. 1, the observables of interest are
defined as

A
sin(φ+φS)
UT (x)

=
(∫

dz dy d2Ph⊥ sin(φ + φs)

×
(

1
S↑

d5σ↑

dxdy dz d2Ph⊥
− 1

S↓
d5σ↓

dxdy dz d2Ph⊥

))
/(

1
2

∫
dz dy d2Ph⊥

×
(

d5σ↑

dxdy dz d2Ph⊥
+

d5σ↓

dxdy dz d2Ph⊥

))
, (4)

A
sin(φ+φS)k⊥/〈Ph⊥〉
UT (x)

=
(∫

dz dy d2Ph⊥ sin(φ + φs)
k⊥

〈Ph⊥〉

×
(

1
S↑

d5σ↑

dxdy dz d2Ph⊥
− 1

S↓
d5σ↓

dxdy dz d2Ph⊥

))
/(

1
2

∫
dz dy d2Ph⊥

×
(

d5σ↑

dxdy dz d2Ph⊥
+

d5σ↓

dxdy dz d2Ph⊥

))
. (5)

The weight sin(φ + φs) in (4) has the drawback that it
leaves convoluted the transverse momenta in the uninte-
grated distribution and fragmentation functions – in this
case h1(x, P 2

N⊥) and H⊥
1 (z, k2

T ) [15]. (For the meaning and
definition of unintegrated distribution functions in QCD
see [31] and references therein.) The additional power of
the transverse momentum5 k⊥ = |Ph⊥|/z in the weight
in (5) yields expressions where the transverse momenta
are disentangled in a model independent way [16].

Though the asymmetry weighted with k⊥ in (5) is
preferable from a theoretical point of view [16], we shall
consider both asymmetries, (4) and (5). Considering also
the asymmetry (4) will allow us to directly compare the
predicted effect to the Asin φ

UL asymmetries measured at
HERMES [1–4] which were analyzed in a way analogous
to (4).

The expressions for the differential cross sections enter-
ing the asymmetries in (4) and (5) were derived in [15] as-
suming factorization. In order to deconvolve the transverse
momenta in A

sin(φ+φS)
UT in (4) we assume the distributions

of transverse momenta in the unintegrated distribution and
fragmentation functions to be Gaussian. This ansatz is in
fair agreement with the HERMES data in the case of Asin φ

UL

5 We use the notation of [15, 16] with H⊥
1 normalized to

〈Ph⊥〉 instead of mh. Correspondingly we choose 〈Ph⊥〉 to
compensate the dimension of k⊥ in (5)

asymmetries [1–4]. Under this assumption one obtains [15]
(cf. also [22])

A
sin(φ+φs)
UT (x) = aGauss BT(x)

∑
a e2

a x ha
1(x) 〈H⊥a

1 〉∑
b e2

b x f b
1(x) 〈Db

1〉
, (6)

while the result for the k⊥-weighted asymmetry is given
by [16]

A
sin(φ+φs)k⊥/〈Ph⊥〉
UT (x) = BT(x)

∑
a e2

a x ha
1(x) 〈H⊥(1)a

1 〉∑
b e2

b x f b
1(x) 〈Db

1〉
,

(7)
where BT(x) and aGauss are defined as (experimental cuts
have to be considered in the integration over y)

BT(x) =
2

∫
dy (1 − y) sin ΘS/Q4∫

dy (1 − y + y2/2) /Q4 , (8)

aGauss =
1

2〈z〉√1 + 〈z2〉〈P 2
N⊥〉/〈P 2

h⊥〉 , (9)

where 〈P 2
N⊥〉 and 〈P 2

h⊥〉/〈z2〉 are the mean transverse mo-
mentum squares characterizing the Gaussian distributions
of transverse momenta in the unintegrated distribution and
fragmentation function. The prefactor aGauss contains the
model dependence; it would be different if we assumed the
distributions of transverse momenta to be different from
Gaussian. H⊥(1)a

1 (z) in (7) is defined by [16] (cf. footnote 5)

H
⊥(1)a
1 (z) =

∫
d2kT

z2k2
T

2〈Ph⊥〉2 H⊥a
1 (z, z2k2

T) . (10)

3 Transversity distribution
and Collins fragmentation function

In order to estimate the azimuthal asymmetries, (4) and (5)
and (6) and (7), one has to know ha

1 and H⊥a
1 . For the

former we shall use the predictions of the chiral quark–
soliton model (χQSM) [30], and for the latter our analysis
of the HERMES data from [22].

Chirally and T -odd distribution functions

The χQSM is an effective relativistic quantum field-theo-
retical model with explicit quark degrees of freedom, in
which twist-2 nucleon distribution functions can unam-
biguously be defined and evaluated at a low renormaliza-
tion point of about (600–700) MeV. The χQSM has been
derived from the instanton model of the QCD vacuum [32]
and has been shown to describe well numerous static nucle-
onic observables without adjustable parameters [33]. The
field-theoretical nature of the model is crucial to ensure
the theoretical consistency of the approach: the quark and
antiquark distribution functions computed in the model
satisfy all general QCD requirements [34]. The results of
the model agree for the distribution functions fa

1 (x), ga
1 (x)

and ga
T(x) [34–36] within (10–30)% with phenomenological
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information. This encourages confidence that the model
describes the nucleon transversity distribution function
ha

1(x) [30] with a similar accuracy.
In the following we will need also the deuteron transver-

sity distribution. Corrections due to the D-state admixture
were estimated to be very similar to the corresponding cor-
rections in the case of the helicity distribution function [37].
Since these corrections are smaller than other theoretical
uncertainties in our approach we shall disregard them here
and estimate e.g. for the u-quark

h
u/D
1 (x) ≈ h

u/p
1 (x) + h

u/n
1 (x) = hu

1 (x) + hd
1(x) , (11)

where isospin symmetry was used in the last step, and
hu

1 (x) and hd
1(x) refer (as always) to the proton.

In the χQSM ha
1(x) �= ga

1 (x) already at a low normal-
ization point. However, due to the large error bars the
present data do not discriminate between different mod-
els. Therefore reasonable descriptions of the Asin φ

UL asym-
metries have also been obtained assuming ha

1(x) = ga
1 (x)

being motivated by the non-relativistic quark model or
using other models [20]. An advantage of relying on pre-
dictions from the χQSM (based on the instanton vacuum)
lies in the fact that all novel distribution functions are
taken from an approach which is internally consistent and
which has been shown in many different observables to be
reasonable. For example, in the instanton vacuum model
the pure twist-3 contribution h̃a

L(x) to ha
L(x) is strongly

suppressed [38]. Thus in this approach one can justifiably
approximate ha

L(x) by its twist-2 (“Wandzura–Wilczek”
like) term ha

L(x) = 2x
∫ 1

x
dx′ ha

1(x′)/x′2. Moreover, T -odd
distribution functions vanish in the χQSM (as they do in
a large class of other chiral soliton models) [39]. Therefore
in this approach it is consistent to neglect the Sivers ef-
fect in Asin φ

UL asymmetries [24]; see also Sect. 6 for further
comments.

In [22, 23] the present approach has been shown to
describe well the x-dependence of AUL from the HERMES
longitudinal target polarization experiments [1–4].

The Collins fragmentation function

Let us define the favored Collins fragmentation function
as

H⊥
1 ≡ H

⊥u/π+

1 = H
⊥d̄/π+

1 = H
⊥d/π−

1 = 2H
⊥u/π0

1 = . . . etc.

� H
⊥d/π+

1 = H
⊥ū/π+

1 = . . . etc. (12)

The equalities in (12) follow from charge conjugation and
isospin symmetry. The strong suppression of the unfavored
with respect to the favored Collins fragmentation function
has been concluded to on the basis of the Schäfer–Teryaev
sum rule [40].

In [22] information on H⊥
1 was gained from the HER-

MES data on the Asin φ
UL asymmetry in π+ and π0 pro-

duction [2, 3]. With this aim the transverse momentum
distributions were assumed to be Gaussian and the par-
ton distribution functions ha

1 and ha
L were taken from the

chiral quark–soliton model. For the analyzing power the
value was found (D1 denotes the favored unpolarized frag-
mentation function)

〈H⊥
1 〉/〈D1〉 = (13.8 ± 2.8)% (13)

at 〈z〉 = 0.4 and 〈Q2〉 = 2.5 GeV2 [22]. The result in (13)
contains – apart from the shown statistical error from the
HERMES experiment – further uncertainties due to the
systematic error of the HERMES experiment and model
dependence. These errors need not be considered in the fol-
lowing, when the above result is used to make predictions
for A

sin(φ+φS)
UT in the HERMES experiment in combina-

tion with results from the chiral quark–soliton model and
the instanton vacuum model. In a certain sense the result
in (13) can be considered as a fit to the Asin φ

UL data [2,3]. Re-
markably, a result numerically close to (13) was obtained
in the model calculation of [29].

In e+e− annihilation the Collins effect can give rise to
a specific azimuthal asymmetry of a hadron in a jet around
the axis in the direction of the second hadron in the oppo-
site jet. This asymmetry was measured using the DELPHI
data collection and a value |〈H⊥

1 〉/〈D1〉| = (12.5 ± 1.4)%
for 〈z〉 � 0.4 at a scale of M2

Z was reported [41,42].6 In pre-
vious works [22, 23] this value (assuming a positive sign)
was used to analyze the HERMES data [1–4]. In order
to do this the scale dependence of the ratio 〈H⊥

1 〉/〈D1〉
was assumed to be weak and possible Sudakov suppres-
sion effects [43] were neglected. However, as shown in [44]
the Collins fragmentation function could be process de-
pendent, i.e. different in e+e− annihilation and SIDIS.

Therefore, in this note we shall use the result in (13)
extracted from SIDIS HERMES data. Numerically the dif-
ference is not relevant – from a theoretical point of view,
however, the use of the result in (13) is preferable for our
purpose of describing SIDIS processes.

4 Collins AUT asymmetries
in the HERMES experiment

The asymmetry A
sin(φ+φS)
UT

In order to estimate A
sin(φ+φS)
UT in the HERMES experi-

ment we rely on the same assumptions and approximations
as were used in [22, 23] to analyze the HERMES data on
the Asin φ

UL asymmetries. In particular we assume a Gaus-
sian distribution of transverse momenta (cf. Sect. 2), take
ha

1(x) from the χQSM and H⊥
1 from our previous analysis

of HERMES data [24] and assume favored fragmentation
– as described in Sect. 3. For the unpolarized distribution
functions fa

1 (x) we use the parameterization of [45]. For
6 This result is referred to as “more optimistic” since it is

subject to presumably larger systematic uncertainties than the
“more reliable” value |〈H⊥

1 〉/〈D1〉| = (6.3 ± 2.0)% reported
in [41,42] which has presumably smaller systematic errors. For
both values no estimate of systematic errors could be given
in [41,42]
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Fig. 2. Predictions for azimuthal asym-
metries A

sin(φ+φS)
UT (x) in SIDIS pion pro-

ductions from transversely polarized pro-
ton a and deuteron b targets for kine-
matics of the HERMES experiment

the parameter characterizing the (Gaussian) distribution
of transverse momenta in the nucleon we shall use the
estimate 〈PN⊥〉 = 0.4 GeV from [46, 47]. The result, how-
ever, is only weakly sensitive to the actual choice for this
parameter.

The beam in the HERMES experiment has an energy
of Ebeam = 26.7 GeV. We assume the cuts implicit in the
integrations in (8) to be the same as in the longitudinal
target polarization experiments [1–4]

1 GeV2 < Q2 < 15 GeV2 , 2 GeV < W ,

0.2 < y < 0.85 , 0.023 < x < 0.4 , (14)

and 0.2 < z < 0.7 with 〈z〉 = 0.4, and 〈Ph⊥〉 = 0.4 GeV.
Note that strictly speaking we neglect the implicit depen-
dence of distribution and fragmentation functions on y
through the scale Q2 = xy(s − MN

2), and evaluate them
instead at the average scale in the HERMES experiment
〈Q2〉 = 2.5 GeV2. The predictions for A

sin(φ+φS)
UT for the

transversely polarized proton and deuterium target are
shown in Figs. 2a,b, respectively.

Figures 2a,b demonstrate that A
sin(φ+φS)
UT is sizable,

roughly 20% for positive and neutral pions for the proton
target and about 10% for all pions for the deuteron target.
Comparing this result with the Asin φ

UL asymmetries ∼ (2–
4)% [1–4] we see that A

sin(φ+φS)
UT asymmetry can clearly

be observed, cf. [21]. A comparably large value for this
asymmetry was estimated in [29] on the basis of a model
calculation for the Collins function and assuming ha

1(x) to
saturate the Soffer bound [48].

The accuracy of the predictions – for π+ and π0 asym-
metries from a proton target – is mainly determined by
the theoretical uncertainty of the χQSM prediction for
ha

1(x) of about 20% and the statistical error of the an-
alyzing power (13) from the HERMES experiment. For
negative pions from a proton, however, there might be
additional sizable corrections due to unfavored flavor frag-
mentation [20]. In this case the small unfavored Collins
fragmentation function is multiplied by the large 4

9hu
1 (x)

while the large favored fragmentation function is multi-

plied by the small 1
9hd

1(x).7 Therefore π− is more sensitive
to corrections due to unfavored fragmentation than π+

and π0 where u-quark dominance (hu
1 (x) � |hd

1(x)|) tends
to enhance the favored fragmentation effect. Similar reser-
vations apply to the deuteron target where there is no
u-quark dominance – apart from that introduced by the
quark electric charges.

In [23] Asin φ
UL asymmetries for kaons have been esti-

mated assuming that the analyzing power for kaons is ap-
proximately equal to that of pions, i.e. 〈H⊥

1 〉/〈D1〉|kaon ≈
〈H⊥

1 〉/〈D1〉|pion. This relation would hold exactly in the
chiral limit (where pions and kaons would be massless
Goldstone bosons). The kaon Asin φ

UL asymmetries predicted
in [23] on the basis of this assumption compare well with the
HERMES data within the (admittedly rather large) sta-
tistical error [4]. Under this assumption one could expect
for the transverse target polarization experiment (cf. [23]
for further details)

A
sin(φ+φS)
UT (K+) ≈ A

sin(φ+φS)
UT (K0) ≈ A

sin(φ+φS)
UT (π+) ,

A
sin(φ+φS)
UT (K̄0) ≈ A

sin(φ+φS)
UT (K−) ≈ 0 . (15)

The asymmetry A
sin(φ+φS)k⊥/〈Ph⊥〉
UT

In this case we need the transverse momentum weighted
moment of the favored Collins fragmentation function
H

⊥(1)
1 ; see (7). Under the assumption of a Gaussian dis-

tribution of transverse momenta in (10) one obtains for
H

⊥(1)
1 averaged over z

〈H⊥(1)
1 〉 =

〈P 2
h⊥〉

2〈Ph⊥〉2 〈H⊥
1 〉 =

2
π

〈H⊥
1 〉 , (16)

7 The antiquark distributions can be disregarded for this
qualitative consideration. The same applies to unpolarized frag-
mentation. Since fa

1 (x) and Da
1 (z) are positive, the effect of

unpolarized unfavored fragmentation may decrease the asym-
metry but cannot change its sign as the polarized unfavored
fragmentation in the case of π− from a proton target [20] could
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where we used the relation 〈P 2
h⊥〉/〈Ph⊥〉2 = 4/π valid for

a Gaussian distribution. The 〈H⊥
1 〉 in (16) can be taken

from (13) (recall that the analyzing power (13) was ex-
tracted under the assumption of a Gaussian transverse
momentum distribution [23]).

Therefore we obtain the relation

A
sin(φ+φS)k⊥/〈Ph⊥〉
UT = βGauss A

sin(φ+φS)
UT . (17)

The constant βGauss “converts” between the differently
weighted asymmetries and is given by

βGauss =
2

π aGauss
=

4〈z〉
π

√
1 + 〈z2〉〈P 2

N⊥〉/〈P 2
h⊥〉 ≈ 0.55

(18)
for the numbers in the HERMES experiment. Thus, in
order to obtain our prediction for A

sin(φ+φS)k⊥/〈Ph⊥〉
UT it is

sufficient to multiply the results in Figs. 2a,b by the factor
0.55. We stress that the “conversion factor” βGauss is model
dependent. For a different model of transverse momenta
βmodel �= βGauss. In particular, βmodel could numerically
be different from the result in (18).

Our prediction for A
sin(φ+φS)
UT is more robust than that

for A
sin(φ+φS)k⊥/〈Ph⊥〉
UT (x) since the latter – in addition to

other assumptions in our approach – also tests the as-
sumption of a Gaussian transverse momentum distribu-
tion. In fact, the only assumption entering our prediction
for A

sin(φ+φS)
UT – and the analysis of Asin φ

UL in [23] – is that a
generic unintegrated fragmentation function F (z,k2

T) can
be approximated by

F (z,k2
T) ≈ F (z) G(k2

T) , (19)

where G(k2
T) satisfies

∫
d2kT G(k2

T) = 1, and analogous
for unintegrated distribution functions. For a Gaussian
distribution one sets G(k2

T) = exp(−k2
T/〈k2

T〉)/(π〈k2
T〉).

Assuming (19) but taking a different model for G(k2
T) we

would obtain a different constant amodel �= aGauss in (9).
With a different model for transverse momenta, however,
we also would have obtained a different result in (13) for
〈H⊥

1 〉model. (In this context the 〈H⊥
1 〉 in (13) should be

labelled 〈H⊥
1 〉Gauss for clarity.) Thus under the assump-

tion (19) the relation A
sin(φ+φS)
UT ∝ amodel〈H⊥

1 〉model is
model independent. Therefore our predictions for
A

sin(φ+φS)
UT shown in Figs. 2a and 2b do not depend on the

Gaussian model but rely solely on the assumption (19). If
the assumption (19) held one could discriminate between
different models for the transverse momentum distribu-
tions by considering different powers of transverse mo-
mentum in the weight sin(φ + φS)|k⊥|n (n = 0, 1). Con-
sidering different weights could provide interesting phe-
nomenological insights. However, from a strict theoretical
point of view the weighting with an adequate power of |k⊥|
is preferable [16].

Preliminary SMC results

Though devoted to the HERMES experiment let us con-
clude this section with a comment on the preliminary SMC

data reported in [6]. In the SMC experiment indications
were found that the transverse target spin asymmetry
∝ sin φcAN with AN = 0.11 ± 0.06, where the Collins
angle φc ≡ φ + φS − π (cf. [6] for the precise definition of
AN ). Our approach yields AN = −0.12, i.e. an asymmetry
of opposite sign [22, 23] (due to sinφc = − sin(φ + φS)).
Considering the preliminary status of the data of [6] it is
not possible to draw any conclusions at this stage.

5 COMPASS experiment

Transverse target spin asymmetry

The beam energy available at COMPASS is Ebeam =
160 GeV [28]. For the kinematic cuts we shall take

2 GeV2 < Q2 < 50 GeV2, 15 GeV2 < W 2 < 300 GeV2,

0.05 < y < 0.9 , x < 0.4 , (20)

and evaluate the distribution functions at Q2 = 10 GeV2.
We take 〈Ph⊥〉 ≈ 0.4 GeV and 〈z〉 ≈ 0.4. The latter means
that we can use for 〈H⊥

1 〉/〈D1〉 the result in (13) – if we
assume that the ratio 〈H⊥

1 〉/〈D1〉 is only weakly scale de-
pendent in the range of scales relevant in the HERMES
and COMPASS experiments. The estimate of A

sin(φ+φS)
UT

obtained in this way is shown in Fig. 3a.
In the HERMES experiment the analyzing power (as-

suming our approach) is H⊥
1 (z)/D1(z) ≈ a z where the

constant a ≈ 1
3 [22]. This means that 〈H⊥

1 〉/〈D1〉 ≈ a〈z〉.
If such a pattern held also at COMPASS energies, it would
be preferable to choose a larger low-z cut in order to in-
crease 〈z〉 and thus the analyzing power 〈H⊥

1 〉/〈D1〉 (at
the price of a lower statistics) [28]. For a different 〈z〉 the
results shown in Fig. 3a have to be rescaled appropriately.

Figure 3a shows that A
sin(φ+φS)
UT can be of O(20%) at

COMPASS energies, i.e. as large as at HERMES. This is
not unexpected since this asymmetry is twist-2 (in the
sense that it is not power suppressed). Thus, the COM-
PASS experiment can equally well shed some light on the
dynamics of the Collins effect. Actually, the theoretical
accuracy of the predictions in Fig. 3a is less than in the
case of the predictions for HERMES presented in the pre-
vious section because one has to consider the uncertainty
introduced by assuming that the HERMES value for the
analyzing power (13) can be used at COMPASS energies.

Longitudinal target spin asymmetries

About 80% of the beam time the target polarization in
the COMPASS experiment will be longitudinal [28]. This
will allow one to measure the longitudinal target spin
asymmetries Asin φ

UL and Asin 2φ
UL . (In the case of longitu-

dinal target polarization the azimuthal angle of the tar-
get polarization vector φS = 0 or π; cf. Fig. 1.) The esti-
mates for these asymmetries in our approach are shown
in Figs. 3b,c. Clearly, the longitudinal target spin asym-
metries are much smaller than the transverse target spin
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Fig. 3. a Prediction of the azimuthal asymmetry A
sin(φ+φS)
UT (x) in SIDIS pion production from a transversely polarized proton

target for the kinematics of the COMPASS experiment. Predictions of the azimuthal asymmetries Asin φ
UL (x) b and Asin 2φ

UL (x)
c from a longitudinally polarized proton target for the kinematics of the COMPASS experiment
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Fig. 4a–c. The same as Fig. 3 but for the deuteron target

asymmetry A
sin(φ+φS)
UT , however, the larger statistics could

help to resolve them.
The Asin 2φ

UL (x) asymmetry is of particular interest –
since it is one of the “independent observables” which
could provide further insights; cf. Sect. 1. This asymme-
try was found to be consistent with zero within error bars
at HERMES [1–4]. In our approach at HERMES energies
Asin 2φ

UL = O(1%) [22, 23] – in agreement with the experi-
ment. In the kinematics of the COMPASS experiment we
find Asin 2φ

UL (x) = O(3%), i.e. of the order of magnitude of
the Asin φ

UL (x) asymmetry observed at HERMES.

Deuteron target

The single target spin asymmetries A
sin(φ+φS)
UL , Asin 2φ

UL and
Asin φ

UL for the deuteron target at COMPASS energies are

shown respectively in Figs. 4a,b,c. The deuteron asymme-
tries for π+, π0 and π− are all of comparable order of
magnitude and about half the magnitude of the π+ pro-
ton asymmetries.

6 Sivers effect azimuthal asymmetries

Actually, our approach would imply the vanishing of the
A

sin(φ−φS)
UT (x) asymmetry, which is due to the Sivers ef-

fect [16] and will be measured at HERMES and COMPASS
simultaneously with A

sin(φ+φS)
UT (x). However, this cannot

be taken literally as a prediction for the following reason.
The chiral quark–soliton model was derived from the in-
stanton vacuum model and can be considered as the leading
order in terms of the so-called instanton packing fraction
ρ
R ∼ 1

3 (ρ and R are respectively the average size and
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separation of instantons in Euclidean space time). In this
order the T -odd distribution functions vanish. In higher
orders the Sivers function may well be non-zero and all
one can conclude at this stage is that the Sivers function
is suppressed with respect to the T -even8 twist-2 distri-
bution functions fa

1 (x), ga
1 (x) and ha

1(x).9 However, con-
sidering that H⊥

1 (z) is much smaller than D1(z), cf. (13),
it is questionable whether such a suppression could be
sufficient such that in physical cross sections the Collins
effect ∝ ha

1(x)H⊥
1 (z) is dominant over the Sivers effect

∝ f⊥
1T(x)D1(z). In [24] it was estimated that for the par-

ticular case of Asin φ
UL asymmetries in the HERMES kine-

matics this still could be true: Using the Sivers function
of [14] fitted to explain the E704 data [51] on single spin
asymmetries in pp↑ → πX solely in terms of the Sivers
effect, it was shown that the Sivers effect could give rise
to A

sin(φ−φS)
UT = O(10%) while its contribution to Asin φ

UL is
negligible with respect to the Collins effect. Of course, the
E704 data need not to be due to the Sivers effect alone,
and the Sivers effect in pp↑ → πX need not to be simply
related to the Sivers effect in SIDIS.10 Therefore the obser-
vation of [24] has to be considered with care. Interestingly,
in the quark–diquark model one finds a comparably large
A

sin(φ−φS)
UT = O(10%) [50].

To summarize, though in our approach the Sivers func-
tions vanishes, there need not be a contradiction if the
Sivers effect asymmetry A

sin(φ−φS)
UT would be observed to

be sizable. The measurements of A
sin(φ±φS)
UT at HERMES

and COMPASS (and Asin 2φ
UL at COMPASS) will clarify the

situation.

7 Conclusions

Recently HERMES observed noticeable azimuthal single
spin asymmetries Asin φ

UL in SIDIS off a longitudinally polar-
ized target [1–4]. These asymmetries could arise from both
the Collins and the Sivers effect and are therefore difficult
to interpret. Important further insights can be gained from
the study of azimuthal asymmetries in SIDIS off a trans-
versely polarized target because the angular distribution
of the produced pions allows one to cleanly distinguish
between the Collins and Sivers effect [15,16].

8 The suppression of T -odd with respect to T -even distribu-
tions is natural. E.g. in the quark–diquark models with gluon
exchange [12,49,50] – where the Sivers function was “rediscov-
ered”, cf. [11] – T -even distributions appear at the tree level
while T -odd ones appear only at one-loop level. Thus, whatever
(small) parameter justifies the perturbative calculation of dis-
tribution functions in the quark–diquark model, it generically
suppresses T -odd distributions with respect to T -even ones

9 In the case of the pure twist-3 h̃a
L(x) [38] (or g̃a

T(x) [36])
it was shown on the basis of [52] that the suppression in the
instanton medium with respect to twist-2 distributions is very
strong
10 Cf. the corresponding discussions of the Sivers effect in
SIDIS and the Drell–Yan process, where the Sivers functions
differ by an overall sign [11,13]

In this note we have presented estimates of the az-
imuthal single spin asymmetries due to the Collins effect,
A

sin(φ+φS)
UT , both for the HERMES and COMPASS exper-

iments. These calculations are based on two ingredients.
One ingredient, which is responsible for the x-shape of
the predicted asymmetries, is the chirally odd transver-
sity distribution function ha

1(x) provided by the chiral
quark–soliton model (χQSM) [30]. The sign and the over-
all normalization of the predicted AUT asymmetries are
fixed by the second ingredient, namely by the properties
of the Collins fragmentation function H⊥

1 resulting from
our analysis [22] of the Asin φ

UL asymmetries observed in the
HERMES experiment. On the basis of this approach we
estimate the A

sin(φ+φS)
UT to be about 20% for π+ and π0

from a proton target and roughly 10% for all pions from
a deuterium target.

Choosing another weight, namely sin(φ−φS), it is pos-
sible to project out another azimuthal asymmetry which is
due to the Sivers effect only [16]. If taken literally, our ap-
proach would predict a vanishing Sivers effect asymmetry
A

sin(φ−φS)
UT because in the χQSM the Sivers distribution

function vanishes. This shortcoming is met basically in all
chiral effective models [39] and reflects the limitations of
such models to describe T -odd distribution functions. In
the χQSM, which is based on an expansion in terms of the
packing fraction of the instantons in the vacuum, T -odd
distribution functions are subleading quantities in contrast
T -even distribution functions. However, a Sivers function
as large as obtained in the quark–diquark models with
gluon exchange [12, 49, 50] yielding A

sin(φ−φS)
UT = O(10%)

[50] would not be in contradiction with our approach [24].
Noteworthy is that the longitudinal target polariza-

tion program of the COMPASS experiment may also well
contribute to the understanding of single spin asymme-
tries in SIDIS. Our approach predicts the Asin 2φ

UL asym-
metry, which was found consistent with zero within (rel-
atively large) error bars at HERMES, is of O(3%) in the
COMPASS kinematics and can probably be resolved. This
asymmetry is due to the Collins effect only and its mea-
surement would provide valuable independent information.
The Asin φ

UL asymmetry is about (1–2)% and more difficult
to measure for COMPASS.

A measurement of the A
sin(φ+φS)
UT asymmetry at HER-

MES and COMPASS and the Asin 2φ
UL at COMPASS of com-

parable magnitude as we estimated here would support
the observation [24] that the Sivers effect could play a sub-
dominant role in the Asin φ

UL asymmetries measured by HER-
MES [1–4] and a posteriori justify the attempts [17–23] to
interpret these data in terms of the Collins effect only.
In contrast, deviations from our predictions could provide
valuable hints how those attempts should be modified. We
will – in any case – soon learn a lot from the HERMES
and COMPASS experiments.
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A Expressions for
longitudinal target polarization asymmetries

For the convenience of the reader we summarize the expres-
sions for Asin 2φ

UL and Asin φ
UL which were derived in [19,22,23]

on the basis of the results from [15]:

Asin φ
UL (x)

= aGauss

(
PL(x)

∑
a e2

a x2ha
L(x) 〈H⊥a

1 〉∑
b e2

b xf b
1(x) 〈Db

1〉

+ P1(x)
∑

a e2
a xha

1(x) 〈H⊥a
1 〉∑

b e2
b xf b

1(x) 〈Db
1〉

)
, (A.1)

Asin 2φ
UL (x) = 4〈z〉2a2

Gauss
2MN

〈P⊥h〉 P2(x)

×
∑

a e2
a 2x3

∫ 1
x

dyha
1(y)/y2 〈H⊥a

1 〉∑
b e2

b xf b
1(x) 〈Db

1〉
, (A.2)

where aGauss is defined as in (9) and the Pi (i = L, 1, 2)
are given by

PL(x) =
2

∫
dy 2(2 − y)

√
1 − y cos θγMN/Q5∫

dy (1 − y + y2/2) / Q4 ,

P1(x) = − 2
∫

dy (1 − y) sin θγ/Q4∫
dy (1 − y + y2/2) /Q4 ,

P2(x) =
2

∫
dy (1 − y) cos θγ/Q4∫

dy (1 − y + y2/2) /Q4 . (A.3)
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